

Towel - Keeping you DRY since 2010

Towel is a collection of tools which make your life easier if you
are building a web application using Django. It contains helpers and
templates for creating paginated, searchable object lists, CRUD
functionality helping you safely and easily create and update objects,
and using Django’s own proofed machinery to see what happens when
you want to safely delete objects.

Contents

	Installation instructions

	Towel API
	The API class

	Resources

	The serializer

	The request parser

	Additional classes and exceptions

	Utility functions

	API behavior

	ModelView
	Preparing your models, views and URLconfs for ModelView

	The main ModelView class

	List Searchable

	Object detail pages

	Adding and updating objects

	Object deletion

	Standard context variables

	Permissions

	Batch processing

	Search and Filter
	Making lists searchable using the search form

	Persistent queries

	Quick Rules

	Template tags
	ModelView detail tags

	ModelView list tags

	Batch tags

	Form tags

Autogenerated API Documentation

	API programming

	Deletion

	Forms

	Managers

	ModelView

	Multitenancy
	Assumptions

	Forms

	Middleware for a lazy request.access attribute

	Models for multitenant Django projects

	Paginator

	Queryset transform
	django_queryset_transform

	LICENSE

	Quick

	Template tags
	ModelView template tags

	Batch form template tags

	Generally helpful form tags

	Template tags for pulling out the verbose_name(_plural)? from almost any object

	Utils

Indices and tables

	Index

	Module Index

	Search Page

Installation instructions

This document describes the steps needed to get Towel up and running.

Towel is based on Django [http://www.djangoproject.com/], so you need a working Django [http://www.djangoproject.com/] installation
first. Towel is mainly developed using the newest release of Django [http://www.djangoproject.com/], but
should work with Django [http://www.djangoproject.com/] 1.4 up to the upcoming 1.7 and with Python [http://www.python.org/] 2.7
and 3.3. Towel does not currently support Python [http://www.python.org/] 3.2 but patches adding
support are welcome.

Towel can be installed using the following command:

$ pip install Towel

Towel has no dependencies apart from Django [http://www.djangoproject.com/].

You should add towel to INSTALLED_APPS if you want to use
the bundled templates and template tags. This isn’t strictly
required though.

Towel API

towel.api is a set of classes which facilitate building a RESTful
API. In contrast to other, well known projects such as
django-piston [https://bitbucket.org/jespern/django-piston/] and
tastypie [http://tastypieapi.org/] it does not try to cover all HTTP
verbs out of the box, and does not come with as many configuration knobs
and classes for everything, and tries staying small and simple instead.

The API consists of the following classes and methods, which are explained
in more depth further down this page:

	API:
A collection of resources.

	Resource:
A single resource which exposes a Django model instance.

	Serializer:
The API response serializer, responsible for content type negotiation
and creation of HttpResponse [http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse] instances.

	RequestParser:
Understands requests in various formats (JSON, urlencoded, etc.) and
handles the differences.

	APIException:
An exception which can be raised deep down in the API / resource machinery
and will be converted into a nicely formatted response in the requested
content format.

	Objects and Page:
Containers for objects related to a particular resource and / or URI.
They are returned by the method Resource.objects().

	api_reverse():
Helper for reversing URLs inside a particular API instance.

	serialize_model_instance():
The default Django model serializer.

	querystring():
Helper for constructing querystrings.

The API class

	
class towel.api.API(name, decorators=[csrf_exempt])

	This class acts as a collection of resources. The arguments are:

	name: The name of this API. If you don’t know what to use here,
simply use 'v1'.

	decorators: A list of decorators which should be applied to the
root API view and to all resources (if you don’t override it upon
resource registration). The list of decorators is applied in reverse,
which means that you should follow the same order as if you were using
the @decorator notation. It’s recommended to always use
csrf_exempt() [http://docs.djangoproject.com/en/dev/ref/csrf/#django.views.decorators.csrf.csrf_exempt] here, otherwise
API requests other than GET, HEAD, OPTIONS and TRACE (the HTTP verbs
defined as safe by RFC2616) will have to include a valid CSRF
middleware token.

Example:

api_v1 = API('v1')

	
name

	The name of this API.

	
decorators

	The decorators passed upon initialization.

	
resources

	A list of dictionaries holding resource configuration.

	
serializers

	A dictionary mapping models to serialization functions. If a model
does not exist inside this dictionary, the default serialization
function serialize_model_instance() is used.

	
urls

	This property returns a URL pattern instance suitable for including
inside your main URLconf:

from .views import api_v1

urlpatterns = patterns('',
 url(r'^api/v1/', include(api_v1.urls)),
)

	
register(self, model, view_class=None, canonical=True, decorators=None, prefix=None, view_init=None, serializer=None)

	Resources are normally not created by hand. This method should be
used instead. The arguments are:

	model: The Django model used in this resource.

	view_class: The resource view class used, defaults to
Resource.

	canonical: Whether this resource is the canonical location of the
model in this API. Allows registering the same model several times in
the API (only one location should be the canonical location!)

	decorators: A list of decorators which should be applied to the
view. Function decorators only, method decorators aren’t supported.
The list is applied in reverse, the order is therefore the same as
with the @decorator notation. If unset, the set of decorators
is determined from the API initialization. Pass an empty list if you
want no decorators at all.

	prefix: The prefix for this model, defaults to the model name in
lowercase. You should include a caret and a trailing slash if you
specify this yourself (prefix=r'^library/').

	view_init: Python dictionary which contains keyword arguments
used during the instantiation of the view_class.

	serializer: Function which takes a model instance, the API
instance and additional keyword arguments (accept **kwargs
for forward compatibility) and returns the serialized representation
as a Python dictionary.

	
serialize_instance(self, instance, **kwargs)

	Returns a serialized version of the passed model instance.

This method should always be used for serialization, because it knows
about custom serializers specified when registering resources with this
API.

	
root(self, request)

	Main API view, returns a list of all available resources

Resources

	
class towel.api.Resource(self, **kwargs)

	This is a View [http://docs.djangoproject.com/en/dev/ref/class-based-views/base/#django.views.generic.base.View] subclass with
additional goodies for exposing a Django model in a RESTful way. You
should not instantiate this class yourself, but use
API.register() instead.

	
api

	The API instance to which this resource is bound to.

	
model

	The model exposed by this resource.

	
queryset

	Prefiltered queryset for this resource or None if all objects
accessible through the first defined manager on the model should be
exposed (or if you do the limiting yourself in
Resource.get_query_set())

	
limit_per_page

	Standard count of items in a single request. Defaults to 20. This
can be overridden by sending a different value with the limit
querystring parameter.

	
max_limit_per_page

	Maximal count of items in a single request. limit query values
higher than this are not allowed. Defaults to 1000.

	
http_method_names

	Allowed HTTP method names. The Resource only comes with
implementations for GET, HEAD and OPTIONS. You have to implement
all other handlers yourself.

A typical request-response cycle

	
Resource.dispatch(self, request, *args, **kwargs)

	This method is the primary entry point for requests. It is similar
to the base class implementation but has a few important differences:

	It uses self.request, self.args and self.kwargs in
all places.

	It calls unserialize_request() after assigning the
aforementioned variables on self which may modify all aspects
and all variables (f.e. deserialize a JSON request and serialize
it again to look like a standard POST request) and only then
determines whether the request should be handled by this view at
all.

	The return value of the get(),
post() etc. methods is passed to
serialize_response() and only then returned to
the client. The processing methods should return a dictionary which
is then serialized into the requested format. If the format is
unknown or unsupported, a 406 Not acceptable HTTP error is returned
instead.

	APIException and Http404 [http://docs.djangoproject.com/en/dev/topics/http/views/#django.http.Http404]
exceptions are caught and transformed into appropriate responses
according to the content type requested.

	
Resource.unserialize_request(self)

	This method’s intent is to standardize various aspects of the incoming
request so that the following code does not have to care about the format
of the incoming data. It might decode incoming JSON data and reformat
it as a standard HTTP POST.

Currently, this method does nothing, and because of that, content is only
accepted in two forms:

	urlencoded in the request body

	multipart in the request body

	
Resource.get(self, request, *args, **kwargs)

	

	
Resource.head(self, request, *args, **kwargs)

	These methods return serialized lists, sets or details depending upon
the request URI.

All of the following are valid URIs for a fictional resource for books:

	/api/v1/book/: Returns 20 books.

	/api/v1/book/?offset=20&limit=20: Returns books 21-40.

	/api/v1/book/42/: Returns the book with the primary key of 42.

	/api/v1/book/1;3;15/: Returns a set of three books.

The get() method offloads processing into three
distinct methods depending upon the URI:

	
get_single(self, request, objects, *args, **kwargs)

	

	
Resource.get_set(self, request, objects, *args, **kwargs)

	

	
Resource.get_page(self, request, objects, *args, **kwargs)

	

These methods receive an Objects instance containing all
instances they have to process. The default implementation of all these
methods use API.serialize_instance() to do the serialization
work (using the API instance at Resource.api).

If any of the referenced objects do not exist for the single and the set
case, a HTTP 404 is returned instead of returning a partial response.

The list URI does not only return a list of objects, but another mapping
containing metadata about the response such as URIs for the previous and
next page (if they exist) and the total object count.

	
Resource.options(self, request, *args, **kwargs)

	Returns a list of allowed HTTP verbs in the Allow response header.
The response is otherwise empty.

Note

URIs inside the resource might still return 405 Method not allowed
erorrs if a particular HTTP verb is only implemented for a subset
of URIs, for example only for single instances.

	
Resource.post(self, request, *args, **kwargs)

	

	
Resource.put(self, request, *args, **kwargs)

	

	
Resource.delete(self, request, *args, **kwargs)

	

	
Resource.patch(self, request, *args, **kwargs)

	

	
Resource.trace(self, request, *args, **kwargs)

	Default implementations do not exist, that means that if you do not
provide your own, the only answer will ever be a HTTP 405 Method not
allowed error.

	
Resource.serialize_response(self, response, status=httplib.OK, headers={})

	This method is a thin wrapper around Serializer.serialize().
If response is already a HttpResponse [http://docs.djangoproject.com/en/dev/ref/request-response/#django.http.HttpResponse]
instance, it is returned directly.

The content types supported by Serializer are JSON,
but more on that later.

The serializer

	
class towel.api.Serializer

	

The API supports output as JSON. The format is determined
by looking at the HTTP Accept header first. If no acceptable encoding
is found, a HTTP 406 Not acceptable error is returned to the client.

The detection of supported content types can be circumvented by adding
a querystring parameter naemd format. The supported values are as
follows:

	?format=json or ?format=application/json for JSON output

The request parser

	
class towel.api.RequestParser

	Parses the request body into a format independent of its content type.

Does nothing for the following HTTP methods because they are not supposed
to have a request body:

	GET

	HEAD

	OPTIONS

	TRACE

	DELETE

Otherwise, the code tries determining a parser for the request. The
following content types are supported:

	application/x-www-form-urlencoded (the default)

	multipart/form-data

	application/json

The two former content types are supported directly by Django, all
capabilities and restrictions are inherited directly. When using JSON,
file uploads are not supported.

The parsed data is available as request.POST and request.FILES.
request.POST is used instead of something else even for PUT and
PATCH requests (among others), because most code written for Django
expects data to be provided under that name.

	
parse(self, request)

	Decides whether the request body should be parsed, and if yes, decides
which parser to use. Returns a HTTP 415 Unsupported media type if the
request isn’t understood.

	
parse_form(self, request)

	

	
parse_json(self, request)

	The actual work horses.

Additional classes and exceptions

	
exception towel.api.APIException(error_message=None, status=None, data={})

	Custom exception which signals a problem detected somewhere inside
the API machinery.

Usage:

Use official W3C error names from ``httplib.responses``
raise ClientError(status=httplib.NOT_ACCEPTABLE)

or:

raise ServerError('Not implemented, go away',
 status=httplib.NOT_IMPLEMENTED)

Additional information can be passed through by setting the data
argument to a dict instance. The APIException handler
will merge the dict into the default error data and return everything
to the client:

raise APIException('Validation failed', data={
 'form': form.errors,
 })

	
class towel.api.Objects(queryset, page, set, single)

	A namedtuple holding the return value of
Resource.objects().

	
class towel.api.Page(queryset, offset, limit, total)

	A namedtuple for the page object from
Objects above.

Utility functions

	
towel.api.api_reverse(model, ident, api_name='api', fail_silently=False, **kwargs)

	Determines the canonical URL of API endpoints for arbitrary models.

	model is the Django model you want to use,

	ident should be one of list, set or detail at the
moment

	Additional keyword arguments are forwarded to the
reverse() call.

Usage:

api_reverse(Product, 'detail', pk=42)

Passing an instance works too:

api_reverse(instance, 'detail', pk=instance.pk)

	
towel.api.serialize_model_instance(instance, api, inline_depth=0, exclude=(), only_registered=True, build_absolute_uri=lambda uri: uri, **kwargs)

	Serializes a single model instance.

If inline_depth is a positive number, inline_depth levels of related
objects are inlined. The performance implications of this feature might be
severe! Note: Additional arguments specified when calling
serialize_model_instance such as exclude, only_registered and
further keyword arguments are currently not forwarded to inlined
objects. Those parameters should be set upon resource registration time as
documented in the API docstring above.

The exclude parameter is especially helpful when used together with
functools.partial.

Set only_registered=False if you want to serialize models which do not
have a canonical URI inside this API.

build_absolute_uri should be a callable which transforms any passed
URI fragment into an absolute URI including the protocol and the hostname,
for example request.build_absolute_uri.

This implementation has a few characteristics you should be aware of:

	Only objects which have a canonical URI inside this particular API are
serialized; if no such URI exists, this method returns None. This
behavior can be overridden by passing only_registered=False.

	Many to many relations are only processed if inline_depth has a
positive value. The reason for this design decision is that the database
has to be queried for showing the URIs of related objects anyway and
because of that we either show the full objects or nothing at all.

	Some fields (currently only fields with choices) have a machine readable
and a prettified value. The prettified values are delivered inside the
__pretty__ dictionary for your convenience.

	The primary key of the model instance is always available as
__pk__.

	
towel.api.querystring(data, exclude=(), **kwargs)

	Returns a properly encoded querystring

The supported arguments are as follows:

	data should be a MultiValueDict instance (i.e. request.GET)

	exclude is a list of keys from data which should be skipped

	Additional key-value pairs are accepted as keyword arguments

Usage:

next_page_url = querystring(
 request.GET,
 exclude=('page',),
 page=current + 1,
)

API behavior

Resource list

The available resources can be determined by sending a request to the root
URI of this API, /api/v1/. Resources can either be canonical or not.

All resources are returned in a list, the canonical URIs for objects are
additionally returned as a hash.

The individual resources are described by a hash containing two values (as
do most objects returned by the API):

	__uri__: The URI of the particular object

	__str__: A string containing the ‘name’ of the object, whatever
that would be (it’s the return value of the __str__ method for
Django models, and the lowercased class name of the model registered
with the resource).

In the list of resources, a particular __str__ value will exist
several times if a model is exposed through more than one resource;
__uri__ values will always be unique.

Listing endpoints

All API endpoints currently support GET, HEAD and OPTIONS requests.

All listing endpoints support the following parameters:

	?limit=<integer>: Determines how many objects will be shown on a
single page. The default value is 20. The lower limit is zero, the
upper limit is determined by the variable max_limit_per_page which
defaults to 1000.

	?offset=<integer>: Can be used for retrieving a different page
of objects. Passing ?offset=20 with a limit of 20 will return the
next page. The offset is zero-indexed.

Note

You won’t have to construct query strings containing these parameters
yourself in most cases. All list views return a mapping with additional
information about the current request and next and previous
links for your convenience as well.

List views return two data structures, objects and meta. The
former is a list of all objects for the current request, the latter
a mapping of additional information about the current set of objects:

	offset: The offset value as described above.

	limit: The limit value as described above.

	total: The total count of objects.

	previous: A link to the previous page or null.

	next: A link to the next page or null.

Object representation

The following fields should always be available on objects returned:

	__uri__: The URI.

	__pk__: The primary key of this object.

	__str__: The return value of the __str__ or __unicode__
method.

A few fields’ values have to be treated specially, because their values
do not have an obvious representation in an JSON document. The fields and
their representations are as follows:

	date [https://docs.python.org/3/library/datetime.html#datetime.date] and datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] objects
are converted into strings using str().

	Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal] is converted into a string without (lossy)
conversion to float first.

	FileField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.FileField] and
ImageField [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ImageField] are shown as the URL of the
file.

	ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] fields are shown as their
canonical URI (if there exists such a URI inside this API) or even
inlined if ?full=1 is passed when requesting the details of an
object.

ModelView

We’ll start with simple object list and object detail pages, explaining many
provided tools along the way. Next, this guide covers the CRUD part of Towel,
talk about batch processing a bit and end up with explaining a few components
in more detail.

Warning

Please note that Towel’s ModelView could be considered similar to Django’s
own generic views. However, they do not have the same purpose and software
design: Django’s generic views use one class per view, and every instance
only processes one request. Towel’s ModelView is more similar to Django’s
admin site in that one instance is responsible for many URLs and handles
many requests. You have to take care not to modify ModelView itself during
request processing, because this will not be thread-safe.

Preparing your models, views and URLconfs for ModelView

ModelView has a strong way of how Django-based web applications should be
written. The rigid structure is necessary to build a well-integrated toolset
which will bring you a long way towards successful completion of your project.
If you do not like the design decisions made, ModelView offers hooks to
customize the behavior, but that’s not covered in this guide.

For this guide, we assume the following model structure and relationships:

from django.db import models

class Publisher(models.Model):
 name = models.CharField(max_length=100)
 address = models.TextField()

class Author(models.Model):
 name = models.CharField(max_length=100)
 date_of_birth = models.DateField(blank=True, null=True)

class Book(models.Model):
 title = models.CharField(max_length=100)
 topic = models.CharField(max_length=100)
 authors = models.ManyToManyField(Author)
 published_on = models.DateField()
 publisher = models.ForeignKey(Publisher)

ModelView works with an URL structure similar to the following:

	/books/

	/books/add/

	/books/<pk>/

	/books/<pk>/edit/

	/books/<pk>/delete/

The regular expression used to match the detail page (here <pk>) can be
customized. If you’d rather match on the slug, on a combination of
several fields (separated by dashes or slashes, whatever you want) or on
something else, you can do this by modifying
urlconf_detail_re. You only have to make sure that
get_object() will know what to do with the extracted
parameters.

If you want to use the primary key-based URL configuration, you do not
need to add a get_absolute_url() method to
your model, because ModelView will add one itself. It isn’t
considered good practice to put primary keys on the web for everyone to see
but it might be okay for your use case.

The main ModelView class

	
class towel.modelview.ModelView(model[, ...])

	The first and only required argument when instantiating a model view is
the Django model. Additional keyword arguments may be used to override
attribute values of the model view class. It is not allowed to pass
keyword arguments which do not exist as attributes on the class already.

	
urlconf_detail_re

	The regular expression used for detail pages. Defaults to a regular
expression which only accepts a numeric primary key.

	
paginate_by

	Objects per page for list views. Defaults to None which means
that all objects are shown on one page (usually a bad idea).

	
pagination_all_allowed

	Pagination can be deactivated by passing ?all=1 in the URL.
If you expect having lots of objects in the table showing all on
one page can lead to a very slow and big page being shown. Set
this attribute to False to disallow this behavior.

	
paginator_class

	Paginator class which should have the same interface as
django.core.paginator.Paginator [http://docs.djangoproject.com/en/dev/topics/pagination/#django.core.paginator.Paginator]. Defaults to
towel.paginator.Paginator which is almost the same as
Django’s, but offers additional methods for outputting Digg-style
pagination links.

	
template_object_name

	The name used for the instance in detail and edit views. Defaults
to object.

	
template_object_list_name

	The name used for instances in list views. Defaults to
object_list.

	
base_template

	The template which all standard modelview templates extend. Defaults
to base.html.

	
form_class

	The form class used to create and update models. The method
get_form() returns this value instead of invoking
modelform_factory() [http://docs.djangoproject.com/en/dev/ref/forms/models/#django.forms.models.modelform_factory] if it is set.
Defaults to None.

	
search_form

	The search form class to use in list views. Should be a subclass of
towel.forms.SearchForm. Defaults to None, which
deactivates search form handling.

	
search_form_everywhere

	Whether a search form instance should be added to all views, not only
to list views. Useful if the search form is shown on detail pages
as well.

	
batch_form

	The batch form class used for batch editing in list views. Should be
a subclass of towel.forms.BatchForm. Defaults to None.

	
default_messages

	A set of default messages for various success and error conditions.
You should not modify this dictionary, but instead override messages
by adding them to custom_messages below. The
current set of messages is:

	object_created

	adding_denied

	object_updated

	editing_denied

	object_deleted

	deletion_denied

	deletion_denied_related

Note that by modifying this dictionary you are modifying it for all
model view instances!

	
custom_messages

	A set of custom messages for custom actions or for overriding messages
from custom_messages.

Note that by modifying this dictionary you are modifying it for all
model view instances! If you want to override a few messages only for
a particular model view instance, you have to set this attribute to
a new dictionary instance, not update the existing dictionary.

	
view_decorator(self, func)

	

	
crud_view_decorator(self, func)

	The default implementation of get_urls() uses
those two methods to decorate all views, the former for list and detail
views, the latter for add, edit and delete views.

Models and querysets

	
towel.modelview.ModelView.get_query_set(self, request, *args, **kwargs)

	This method should return a queryset with all objects this modelview
is allowed to see. If a certain user should only ever see a subset of
all objects, add the permission checking here. Example:

class UserModelView(ModelView):
 def get_query_set(self, request, *args, **kwargs):
 return self.model.objects.filter(created_by=request.user)

	
towel.modelview.ModelView.get_object(self, request, *args, **kwargs)

	Returns a single object for the query parameters passed as args and
kwargs or raises a ObjectDoesNotExist [http://docs.djangoproject.com/en/dev/ref/exceptions/#django.core.exceptions.ObjectDoesNotExist]
exception. The default implementation passes all args and kwargs to
a get() call, which means that all
parameters extracted by the urlconf_detail_re regular
expression should uniquely identify the object in the queryset returned
by get_query_set() above.

	
towel.modelview.ModelView.get_object_or_404(self, request, *args, **kwargs)

	Wraps get_object(), but raises a Http404 [http://docs.djangoproject.com/en/dev/topics/http/views/#django.http.Http404]
instead of a ObjectDoesNotExist [http://docs.djangoproject.com/en/dev/ref/exceptions/#django.core.exceptions.ObjectDoesNotExist].

Object lists

Towel`s object lists are handled by list_view(). By default,
all objects are shown on one page but this can be modified through
paginate_by. The following code puts a paginated list of
books at /books/:

from myapp.models import Book
from towel.modelview import ModelView

class BookModelView(ModelView):
 paginate_by = 20

book_views = BookModelView(Book)

urlpatterns = patterns('',
 url(r'^books/', include(book_views.urls)),
)

This can even be written shorter if you do not want to override any ModelView
methods:

from myapp.models import Book
from towel.modelview import ModelView

urlpatterns = patterns('',
 url(r'^books/', include(ModelView(Book, paginate_by=20).urls)),
)

The model instances are passed as object_list into the template by default.
This can be customized by setting template_object_list_name
to a different value.

The list_view() method does not contain much code, and simply defers to
other methods who do most of the grunt-work. Those methods are shortly explained
here.

	
towel.modelview.ModelView.list_view(self, request)

	Main entry point for object lists, calls all other methods.

	
towel.modelview.ModelView.handle_search_form(self, request, ctx, queryset=None)

	

	
towel.modelview.ModelView.handle_batch_form(self, request, ctx, queryset)

	These methods are discussed later, under List Searchable and
Batch processing.

	
towel.modelview.ModelView.paginate_object_list(self, request, queryset, paginate_by=10)

	If paginate_by``is given paginates the object list using the ``page GET
parameter. Pagination can be switched off by passing all=1 in the GET
request. If you have lots of objects and want to disable the all=1
parameter, set pagination_all_allowed to False.

	
towel.modelview.ModelView.render_list(self, request, context)

	The rendering of object lists is done inside render_list. This method
calls get_template to assemble a list of templates to try, and
get_context to build the context for rendering the final template. The
templates tried are as follows:

	<app_label>/<model_name>_list.html (in our case, myapp/book_list.html)

	modelview/object_list.html

The additional variables passed into the context are documented in
Standard context variables.

List Searchable

Please refer to the Search and Filter page for information about
filtering lists.

Object detail pages

Object detail pages are handled by detail_view(). All parameters
captured in the urlconf_detail_re regex are passed on to
get_object_or_404(), which passes them to get_object().
get_object() first calls get_query_set(), and tries finding
a model thereafter.

The rendering is handled by render_detail(); the templates tried are

	<app_label>/<model_name>_detail.html (in our case, myapp/book_detail.html)

	modelview/object_detail.html

The model instance is passed as object into the template by default. This
can be customized by setting template_object_name to a different value.

Adding and updating objects

Towel offers several facilities to make it easier to build and process complex
forms composed of forms and formsets. The code paths for adding and updating
objects are shared for a big part.

add_view and edit_view are called first. They defer most of their work
to helper methods.

	
towel.modelview.ModelView.add_view(self, request)

	add_view does not accept any arguments.

	
towel.modelview.ModelView.edit_view(self, request, *args, **kwargs)

	args and kwargs are passed as they are directly into
get_object().

	
towel.modelview.ModelView.process_form(self, request, intance=None, change=None)

	These are the common bits of add_view() and edit_view().

	
towel.modelview.ModelView.get_form(self, request, instance=None, change=None, **kwargs)

	Return a Django form class. The default implementation returns the result
of calling modelform_factory() [http://docs.djangoproject.com/en/dev/ref/forms/models/#django.forms.models.modelform_factory]. Keyword
arguments are forwarded to the factory invocation.

	
towel.modelview.ModelView.get_form_instance(self, request, form_class, instance=None, change=None, **kwargs)

	Instantiate the form, for the given instance in the editing case.

The arguments passed to the form class when instantiating are determined by
extend_args_if_post and **kwargs.

	
towel.modelview.ModelView.extend_args_if_post(self, request, args)

	Inserts request.POST and request.FILES at the beginning of args
if request.method is POST.

	
towel.modelview.ModelView.get_formset_instances(self, request, instance=None, change=None, **kwargs)

	Returns an empty dict by default. Construct your formsets if you want
any in this method:

BookFormSet = inlineformset_factory(Publisher, Book)

class PublisherModelView(ModelView):
 def get_formset_instances(self, request, instance=None, change=None, **kwargs):
 args = self.extend_args_if_post(request, [])
 kwargs.setdefault('instance', instance)

 return {
 'books': BookFormSet(prefix='books', *args, **kwargs),
 }

	
towel.modelview.ModelView.save_form(self, request, form, change)

	Return an unsaved instance when editing an object. change is True
if editing an object.

	
towel.modelview.ModelView.save_model(self, request, instance, form, change)

	Save the instance to the database. change is True if editing
an object.

	
towel.modelview.ModelView.save_formsets(self, request, form, formsets, change)

	Iterates through the formsets dict, calling save_formset on
each.

	
towel.modelview.ModelView.save_formset(self, request, form, formset, change)

	Actually saves the formset instances.

	
towel.modelview.ModelView.post_save(self, request, form, formsets, change)

	Hook for adding custom processing after forms, formsets and m2m relations
have been saved. Does nothing by default.

	
towel.modelview.ModelView.render_form(self, request, context, change)

	Offloads work to get_template, get_context and render_to_response.
The templates tried when rendering are:

	<app_label>/<model_name>_form.html

	modelview/object_form.html

	
towel.modelview.ModelView.response_add()

	

	
towel.modelview.ModelView.response_edit()

	They add a message using the django.contrib.messages framework and redirect
the user to the appropriate place, being the detail page of the edited object
or the editing form if _continue is contained in the POST request.

Object deletion

Object deletion through ModelView is forbidden by default as a safety measure.
However, it is very easy to allow deletion globally:

class AuthorModelView(ModelView):
 def deletion_allowed(self, request, instance):
 return True

If you wanted to allow deletion only for the creator, you could use something
like this:

class AuthorModelView(ModelView):
 def deletion_allowed(self, request, instance):
 # Our author model does not have a created_by field, therefore this
 # does not work.
 return request.user == instance.created_by

Often, you want to allow deletion, but only if no related objects are affected
by the deletion. ModelView offers a helper to do that:

class PublisherModelView(ModelView):
 def deletion_allowed(self, request, instance):
 return self.deletion_allowed_if_only(request, instance, [Publisher])

If there are any books in our system published by the given publisher instance,
the deletion would not be allowed. If there are no related objects for this
instance, the user is asked whether he really wants to delete the object. If
he confirms, the instance is or the instances are deleted for good, depending
on whether there are related objects or not.

Deletion of inline formset instances

Django’s inline formsets are very convenient to edit a set of related objects
on one page. When deletion of inline objects is enabled, it’s much too easy
to lose related data because of Django’s cascaded deletion behavior. Towel
offers helpers to allow circumventing Django’s inline formset deletion behavior.

Note

The problem is that formset.save(commit=False) deletes objects marked
for deletion right away even though commit=False might be interpreted
as not touching the database yet.

The models edited through inline formsets have to be changed a bit:

from django.db import models
from towel import deletion

class MyModel(deletion.Model):
 field = models.CharField(...) # whatever

deletion.Model only consists of a customized Model.delete method
which does not delete the model under certain circumstances. See the
Deletion API documentation if you need to know more.

Next, you have to override save_formsets:

class MyModelView(modelview.ModelView):
 def get_formset_instances(self, request, instance=None, change=None, **kwargs):
 args = self.extend_args_if_post(request, [])
 kwargs['instance'] = instance

 return {
 'mymodels': InlineFormSet(*args, **kwargs),
 }

 def save_formsets(self, request, form, formsets, change):
 # Only delete MyModel instances if there are no related objects
 # attached to them
 self.save_formset_deletion_allowed_if_only(
 request, form, formsets['mymodels'], change, [MyModel])

Warning

save_formset_deletion_allowed_if_only calls save_formset do actually
save the formset. If you need this customized behavior, you must not call
save_formset_deletion_allowed_if_only in save_formset or you’ll get
infinite recursion.

Standard context variables

The following variables are always added to the context:

	verbose_name

	verbose_name_plural

	list_url

	add_url

	base_template

	search_form if search_form_everywhere is True

RequestContext [http://docs.djangoproject.com/en/dev/ref/templates/api/#django.template.RequestContext] is used, therefore all configured
context processors are executed too.

Permissions

get_urls() assumes that there are two groups of users with
potentially differing permissions: Those who are only allowed to view and those
who may add, change or update objects.

To restrict viewing to authenticated users and editing to managers, you could
do the following:

from django.contrib.admin.views.decorators import staff_member_required
from django.contrib.auth.decorators import login_required

book_views = BookModelView(Book,
 search_form=BookSearchForm,
 paginate_by=20,
 view_decorator=login_required,
 crud_view_decorator=staff_member_required,
)

If crud_view_decorator() is not provided, it defaults to
view_decorator(), which defaults to returning the function as-is.
This means that by default, you do not get any view decorators.

Additionally, ModelView offers the following hooks for customizing permissions:

	
towel.modelview.ModelView.adding_allowed(self, request)

	

	
towel.modelview.ModelView.editing_allowed(self, request, instance)

	Return True by default.

	
towel.modelview.ModelView.deletion_allowed(self, request, instance)

	Was already discussed under Object deletion. Returns False
by default.

Batch processing

Suppose you want to change the publisher for a selection of books. You could
do this by editing each of them by hand, or by thinking earlier and doing this:

from django import forms
from django.contrib import messages
from towel import forms as towel_forms
from myapp.models import Book, Publisher

class BookBatchForm(towel_forms.BatchForm):
 publisher = forms.ModelChoiceField(Publisher.objects.all(), required=False)

 formfield_callback = towel_forms.towel_formfield_callback

 def _context(self, batch_queryset):
 data = self.cleaned_data

 if data.get('publisher'):
 messages.success(request, 'Updated %s books.' % (
 batch_queryset.update(publisher=data.get('publisher')),
))

 return {
 'batch_items': batch_queryset,
 }

Activate the batch form like this:

book_views = BookModelView(Book,
 batch_form=BookBatchForm,
 search_form=BookSearchForm,
 paginate_by=20,
)

If you have to return a response from the batch form (f.e. because you want to
generate sales reports for a selection of books), you can return a response in
_context using the special-cased key response:

def _context(self, batch_queryset):
 # [...]

 return {
 'response': HttpResponse(your_report,
 content_type='application/pdf'),
 }

Search and Filter

Towel does not distinguish between searching and filtering.
There are different layers of filtering applied during a request and depending
on your need you have to hook in your filter at the right place.

Making lists searchable using the search form

Pagination is not enough for many use cases, we need more! Luckily, Towel
has a pre-made solution for searching object lists too.

towel.forms.SearchForm can be used together with
towel.managers.SearchManager to build a low-cost implementation of
full text search and filtering by model attributes.

The method used to implement full text search is a bit stupid and cannot
replace mature full text search solutions such as Apache Solr. It might just
solve 80% of the problems with 20% of the effort though.

Code talks. First, we extend our models definition with a
Manager [http://docs.djangoproject.com/en/dev/topics/db/managers/#django.db.models.Manager] subclass with a simple search
implementation:

from django.db import models
from towel.managers import SearchManager

class BookManager(SearchManager):
 search_fields = ('title', 'topic', 'authors__name',
 'publisher__name', 'publisher__address')

class Book(models.Model):
 # [...]

 objects = BookManager()

SearchManager supports queries with multiple clauses;
terms may be grouped using apostrophes, plus and minus signs may be optionally
prepended to the terms to determine whether the given term should be included
or not. Example:

+Django "Shop software" -Satchmo

Please note that you can search fields from other models too. You should
be careful when traversing many-to-many or reverse foreign key relations
however, because you will get duplicated results if you do not call
distinct() [http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.query.QuerySet.distinct] on the resulting queryset.

The method _search() does the heavy
lifting when constructing a queryset. You should not need to override this
method. If you want to customize the results further, f.e. apply a site-wide
limit for the objects a certain logged in user may see, you should override
search().

Next, we have to create a SearchForm subclass:

from django import forms
from towel import forms as towel_forms
from myapp.models import Author, Book, Publisher

class BookSearchForm(towel_forms.SearchForm):
 publisher = forms.ModelChoiceField(Publisher.objects.all(), required=False)
 authors = forms.ModelMultipleChoiceField(Author.objects.all(), required=False)
 published_on__lte = forms.DateField(required=False)
 published_on__gte = forms.DateField(required=False)

 formfield_callback = towel_forms.towel_formfield_callback

You have to add required=False to every field if you do not want validation
errors on the first visit to the form (which would not make a lot of sense, but
isn’t actively harmful).

As long as you only use search form fields whose names correspond to the keywords
used in Django’s .filter() calls or Q() objects you do not have to do
anything else.

The formfield_callback simply substitutes a few fields with whitespace-stripping
equivalents, and adds CSS classes to DateInput and DateTimeInput so that
they can be easily augmented by javascript code.

Warning

If you want to be able to filter by multiple items, i.e. publishers 1 and 2,
you have to define the publisher field in the SearchForm as
ModelMultipleChoiceField [http://docs.djangoproject.com/en/dev/ref/forms/fields/#django.forms.ModelMultipleChoiceField]. Even if the model itself only
has a simple ForeignKey Field. Otherwise only the last element of a series
is used for filtering.

To activate a search form, all you have to do is add an additional parameter
when you instantiate a ModelView subclass:

from myapp.forms import BookSearchForm
from myapp.models import Book
from towel.modelview import ModelView

urlpatterns = patterns('',
 url(r'^books/', include(ModelView(Book,
 search_form=BookSearchForm,
 paginate_by=20,
).urls)),
)

You can now filter the list by providing the search keys as GET parameters:

localhost:8000/books/?author=2
localhost:8000/books/?publisher=4&o=authors
localhost:8000/books/?authors=4&authors=5&authors=6

Advanced SearchForm features

The SearchForm has a post_init method,
which receives the request and is useful if you have to further modify
the queryset i.e. depending on the current user:

def post_init(self, request):
 self.access = getattr(request.user, 'access', None)
 self.fields['publisher'].queryset = Publisher.objects.for_user(request.user)

The ordering is also defined in the SearchForm.
You have to specify a dict called orderings which has the ordering key
as first parameter. The second parameter can be a field name, an iterable of
field names or a callable. The ordering keys are what is used in the URL:

class AddressSearchForm(SearchForm):
 orderings = {
 '': ('last_name', 'first_name'), # Default
 'dob': 'dob', # Sort by date of birth
 'random': lambda queryset: queryset.order_by('?'),
 }

Persistent queries

When you pass the parameter s, the search is stored in the session for
that path. If the user returns to the object list, the filtering is applied again.

The field is included in the SearchForm by default, but don’t forget to
add it to your template if you are using a custom form render method.

To reset the filters, you have to pass ?clear=1 or ?n.

Quick Rules

Another option for filtering are Quick rules.
This allows for field-independent filtering like is:cool.
Quick rules are mapped to filter attributes using regular expressions.
They go into the search form and are parsed automatically
(as long as query_data is used inside the queryset method:

class BookSearchForm(towel_forms.SearchForm):
 quick_rules = [
 (re.compile(r'has:publisher'), quick.static(publisher__isnull=False)),
 (re.compile(r'is:published'), quick.static(published_on__lt=timezone.now)),
]

Template tags

ModelView detail tags

	
towel.templatetags.modelview_detail.model_details()

	Yields a list of (verbose_name, value) tuples for all local model
fields:

{% load modelview_detail %}

<table>
{% for title, value in object|model_details %}
 <tr>
 <th>{{ title }}</th>
 <td>{{ value }}<td>
 </tr>
{% endfor %}
</table>

ModelView list tags

	
towel.templatetags.modelview_list.model_row()

	Requires a list of fields which should be shown in columns on a list page.
The fields may also be callables. ForeignKey fields are automatically
converted into links:

{% load modelview_list %}

<table>
{% for object in object_list %}
 <tr>
 {% for title, value in object|model_row:"__unicode__,author %}
 <td>{{ value }}</td>
 {% endfor %}
 </tr>
{% endfor %}
</table>

	
towel.templatetags.modelview_list.pagination()

	Uses towel/_pagination.html to display a nicely formatted pagination
section. An additional parameter may be provided if the pagination should
behave differently depending on where it is shown; it is passed to
towel/_pagination.html as where:

{% load modelview_list %}

{% if paginator %}{% pagination page paginator "top" %}{% endif %}

{# list / table code ... #}

{% if paginator %}{% pagination page paginator "bottom" %}{% endif %}

As long as paginate_by is set on the ModelView, a paginator object is
always provided. The {% if paginator %} is used because you cannot
be sure that pagination is used at all in a generic list template.

This template tag needs the django.core.context_processors.request
context processor.

	
towel.templatetags.modelview_list.querystring()

	URL-encodes the passed dict in a format suitable for pagination. page
and all are excluded by default:

{% load modelview_list %}

Back to first page

{# equivalent, but longer: #}
Back to first page

	
towel.templatetags.modelview_list.ordering_link()

	Shows a table column header suitable for use as a link to change the
ordering of objects in a list:

{% ordering_link "" request title=_("Edition") %} {# default order #}
{% ordering_link "customer" request title=_("Customer") %}
{% ordering_link "state" request title=_("State") %}

Required arguments are the field and the request. It is very much
recommended to add a title too of course.

ordering_link has an optional argument, base_url which is
useful if you need to customize the link part before the question
mark. The default behavior is to only add the query string, and nothing
else to the href attribute.

It is possible to specify a set of CSS classes too. The CSS classes
'asc' and 'desc' are added automatically by the code depending
upon the ordering which would be selected if the ordering link were
clicked (NOT the current ordering):

{% ordering_link "state" request title=_("State") classes="btn" %}

The classes argument defaults to 'ordering'.

Batch tags

	
towel.templatetags.towel_batch_tags.batch_checkbox()

	Returns the checkbox for batch processing:

{% load towel_batch_tags %}

{% for object in object_list %}
 {# ... #}
 {% batch_checkbox batch_form object.id %}
 {# ... #}
{% endfor %}

Form tags

	
towel.templatetags.towel_form_tags.form_items()

	Returns the concatenated result of running {% form_item field %} on every
form field.

	
towel.templatetags.towel_form_tags.form_item()

	Uses towel/_form_item.html to render a form field. The default template
renders a table row, and includes:

	help_text after the form field in a p.help

	invalid and required classes on the row

	
towel.templatetags.towel_form_tags.form_item_plain()

	Uses towel/_form_item_plain.html to render a form field, f.e. inside a
table cell. The default template puts the form field inside a tag
with various classes depending on the state of the form field such as
invalid and required.

	
towel.templatetags.towel_form_tags.form_errors()

	Shows form and formset errors using towel/_form_errors.html. You can
pass a list of forms, formsets, lists containing forms and formsets and
dicts containing forms and formsets as values.

Variables which do not exist are silently ignored:

{% load towel_form_tags %}

{% form_errors publisher_form books_formset %}

	
towel.templatetags.towel_form_tags.form_warnings()

	Shows form and formset warnings using towel/_form_warnings.html. You can
pass a list of forms, formsets, lists containing forms and formsets and
dicts containing forms and formsets as values. Also shows a checkbox which
can be used to ignore warnings. This template tag does not work with
Django’s standard forms because they have do not have support for warnings.
Use WarningsForm instead.

Variables which do not exist are silently ignored:

{% load towel_form_tags %}

{% form_warnings publisher_form books_formset %}

	
towel.templatetags.towel_form_tags.dynamic_formset()

	This is a very convenient block tag which can be used to build dynamic
formsets, which means formsets where new forms can be added with
javascript (jQuery):

{% load towel_form_tags %}

<script type="text/javascript" src="PATH_TO_JQUERY.JS"></script>
<script type="text/javascript" src="{{ STATIC_URL }}towel/towel.js"></script>
<style type="text/css">.empty { display: none; }</style>

<form method="post" action=".">{% csrf_token %}
 {% form_errors form formset %}

 <table>
 {% for field in form %}{% form_item field %}{% endfor %}
 </table>

 <h2>Formset</h2>

 <table>
 <thead><tr>
 <th>Field 1</th>
 <th>Field 2</th>
 <th></th>
 </tr></thead>
 <tbody>
 {% dynamic_formset formset "formset-prefix" %}
 <tr id="{{ form_id }}" {% if empty %}class="empty"{% endif %}>
 <td>
 {{ form.id }}
 {% form_item_plain form.field1 %}
 </td>
 <td>{% form_item_plain form.field2 %}</td>
 <td>{{ form.DELETE }}</td>
 </tr>
 {% enddynamic_formset %}
 </tbody>
 </table>

 <button type="button" onclick="towel_add_subform('formset-prefix')">
 Add row to formset</button>

 <button type="submit">Save</button>
</form>

The formset-prefix must correspond to the prefix used when initializing
the FormSet in your Python code. You should pass extra=0 when creating
the FormSet class; any additional forms are better created using
towel_add_subform.

API programming

Deletion

Forms

	
class towel.forms.BatchForm(request, queryset, *args, **kwargs)

	This form class can be used to provide batch editing functionality
in list views, similar to Django’s admin actions.

You have to implement your batch processing in the _context()
method. This method only receives one parameter, a queryset which
is already filtered according to the selected items on the list view.
Additionally, the current request is available as an attribute of the
form instance, self.request.

The method process(self) may have the following return values:

	A dict instance: Will be merged into the template context.

	A HttpResponse instance: Will be returned directly to the client.

	An iterable: The handler assumes successful processing of all objects
contained in the iterable.

	Nothing: Nothing happens.

Usage example:

class AddressBatchForm(BatchForm):
 subject = forms.CharField()
 body = forms.TextField()

 def process(self):
 # Form validation has already been taken care of
 subject = self.cleaned_data.get('subject')
 body = self.cleaned_data.get('body')

 if not (subject and body):
 return {}

 sent = 0
 for item in self.batch_queryset:
 send_mail(subject, body, settings.DEFAULT_SENDER,
 [item.email])
 sent += 1
 if sent:
 messages.success(self.request, 'Sent %s emails.' % sent)

 return self.batch_queryset

def addresses(request):
 queryset = Address.objects.all()
 batch_form = AddressBatchForm(request, queryset)
 ctx = {'addresses': queryset}

 if batch_form.should_process():
 result = form.process()
 if isinstance(result, HttpResponse):
 return result
 elif isinstance(result, dict):
 ctx.update(result)
 elif hasattr(result, '__iter__'):
 messages.success(request,
 _('Processed the following items: %s') % (
 ', '.join(force_text(item) for item in result)))

 return HttpResponseRedirect('.')

 return render(request, 'addresses.html', ctx)

Template code:

{% load towel_batch_tags %}
<form method="post" action=".">

 {% for address in addresses %}

 {% batch_checkbox address.id batch_form %}
 {{ address }}

 {% endfor %}

 {# Required! Otherwise, ``BatchForm.process`` does nothing. #}
 <input type="hidden" name="batchform" value="1" />

 <table>
 {{ batch_form }}
 </table>
 <button type="submit">Send mail to selected</button>
</form>

	
batch_queryset

	Returns the queryset containing only items that have been selected
for batch processing.

	
clean()

	Cleans the batch form fields and checks whether at least one item
had been selected.

	
process()

	Actually processes the batch form submission. Override this with
your own behavior.

Batch forms may return the following types here (they are handled
by ModelView.handle_batch_form:

	A HttpResponse:
Will be returned directly to the user.

	An iterable:
A success message will be generated containing all items in the
iterable.

	
should_process()

	Returns true when the submitted form was the batch form, and the
batch form is valid.

	
class towel.forms.ModelAutocompleteWidget(attrs=None, url=None, queryset=None)

	Model autocompletion widget using jQuery UI Autocomplete

Supports both querysets and JSON-returning AJAX handlers as data
sources. Use as follows:

class MyForm(forms.ModelForm):
 customer = forms.ModelChoiceField(Customer.objects.all(),
 widget=ModelAutocompleteWidget(url='/customers/search_ajax/'),
)
 type = forms.ModelChoiceField(Type.objects.all(),
 widget=ModelAutocompleteWidget(queryset=Type.objects.all()),
)

You need to make sure that the jQuery UI files are loaded correctly
yourself.

	
class towel.forms.MultipleAutocompletionWidget(attrs=None, queryset=None)

	You should probably use harvest chosen instead.

	
class towel.forms.SearchForm(data, *args, **kwargs)

	Supports persistence of searches (stores search in the session). Requires
not only the GET parameters but the request object itself to work
correctly.

Usage example:

class AddressManager(SearchManager):
 search_fields = ('first_name', 'last_name', 'address', 'email',
 'city', 'zip_code', 'created_by__email')

class Address(models.Model):
 ...

 objects = AddressManager()

class AddressSearchForm(SearchForm):
 orderings = {
 '': ('last_name', 'first_name'), # Default
 'dob': 'dob', # Sort by date of birth
 'random': lambda queryset: queryset.order_by('?'),
 }
 is_person = forms.NullBooleanField()

def addresses(request):
 search_form = AddressSearchForm(request.GET, request=request)
 queryset = search_form.queryset(Address)
 ctx = {
 'addresses': queryset,
 'search_form': search_form,
 }
 return render(request, 'addresses.html', ctx)

Warning

All fields in the form need to have required=False set. Otherwise,
form validation would already fail on the first visit on the list
page (which would kind of defeat the purpose of a search form).

Template code:

<form method="get" action=".">
 <input type="hidden" name="s" value="1"> <!-- SearchForm search -->
 <table>
 {{ search_form }}
 </table>
 <button type="submit">Search</button>
</form>

{% for address in addresses %}
 ...
{% endfor %}

	
always_exclude = (u's', u'query', u'o')

	Fields which are always excluded from automatic filtering
in apply_filters

	
apply_filters(queryset, data, exclude=())

	Automatically apply filters

Uses form field names for filter() argument construction.

	
apply_ordering(queryset, ordering=None)

	Applies ordering if the value in o matches a key in
self.orderings. The ordering may also be reversed,
in which case the o value should be prefixed with
a minus sign.

	
default = {}

	Default field values - used if not overridden by the user

	
fields_iterator()

	Yield all additional search fields.

	
o = None

	Current ordering

	
orderings = {}

	Ordering specification

	
persist(request)

	Persist the search in the session, or load saved search if user
isn’t searching right now.

	
post_init(request)

	Hook for customizations.

	
prepare_data(data, request)

	Fill in default values from default if they aren’t provided by
the user.

	
query = None

	Full text search query

	
query_data()

	Return a fulltext query and structured data which can be converted into
simple filter() calls

	
queryset(model)

	Return the result of the search

	
quick_rules = []

	Quick rules, a list of (regex, mapper) tuples

	
s = None

	Search form active?

	
safe_cleaned_data

	Safely return a dictionary of values, even if search form isn’t valid.

	
searching()

	Returns searching for use as CSS class if results are filtered
by this search form in any way.

	
class towel.forms.StrippedTextInput(attrs=None)

	TextInput form widget subclass returning stripped contents only

	
class towel.forms.StrippedTextarea(attrs=None)

	Textarea form widget subclass returning stripped contents only

	
class towel.forms.WarningsForm(*args, **kwargs)

	Form subclass which allows implementing validation warnings

In contrast to Django’s ValidationError, these warnings may
be ignored by checking a checkbox.

The warnings support consists of the following methods and properties:

	WarningsForm.add_warning(<warning>): Adds a new warning message

	WarningsForm.warnings: A list of warnings or an empty list if there
are none.

	WarningsForm.is_valid(): Overridden Form.is_valid()
implementation which returns False for otherwise valid forms with
warnings, if those warnings have not been explicitly ignored (by checking
a checkbox or by passing ignore_warnings=True to is_valid().

	An additional form field named ignore_warnings is available - this
field should only be displayed if WarningsForm.warnings is non-emtpy.

	
add_warning(warning)

	Adds a new warning, should be called while cleaning the data

	
is_valid(ignore_warnings=False)

	is_valid() override which returns False for forms with warnings
if these warnings haven’t been explicitly ignored

	
towel.forms.autocompletion_response(queryset, limit=10)

	Helper which returns a HttpResponse list of instances in a format
suitable for consumption by jQuery UI Autocomplete, respectively
towel.forms.ModelAutocompleteWidget.

	
towel.forms.towel_formfield_callback(field, **kwargs)

	Use this callback as formfield_callback if you want to use stripped
text inputs and textareas automatically without manually specifying the
widgets. Adds a dateinput class to date and datetime fields too.

Managers

	
class towel.managers.SearchManager

	Stupid searching manager

Does not use fulltext searching abilities of databases. Constructs a query
searching specified fields for a freely definable search string. The
individual terms may be grouped by using apostrophes, and can be prefixed
with + or - signs to specify different searching modes:

+django "shop software" -satchmo

Usage example:

class MyModelManager(SearchManager):
 search_fields = ('field1', 'name', 'related__field')

class MyModel(models.Model):
 # ...

 objects = MyModelManager()

MyModel.objects.search('yeah -no')

	
search(query)

	This implementation stupidly forwards to _search, which does the
gruntwork.

Put your customizations in here.

	
towel.managers.normalize_query(query_string, findterms=<built-in method findall of _sre.SRE_Pattern object>, normspace=<built-in method sub of _sre.SRE_Pattern object>)

	Splits the query string in invidual keywords, getting rid of unecessary
spaces and grouping quoted words together.

Example:

>>> normalize_query(' some random words "with quotes " and spaces')
['some', 'random', 'words', 'with quotes', 'and', 'spaces']

ModelView

Multitenancy

Assumptions

	The following settings are required:

	TOWEL_MT_CLIENT_MODEL:
The tenant model, e.g. clients.Client.

	TOWEL_MT_ACCESS_MODEL:
The model linking a Django user with a client, must have the following
fields:

	user: Foreign key to auth.User.

	access: An integer describing the access level of the given user.
Higher numbers mean higher access. You have to define those numbers
yourself.

	The lowercased class name of the client model above as a foreign key
to the client model. If your client model is named Customer, the
name of this foreign key must be customer.

	All model managers have a for_access() method with a single argument,
an instance of the access model, which returns a queryset containing only
the objects the current user is allowed to see. The access model should be
available as request.access, which means that you are free to put
anything there which can be understood by the for_access() methods. The
request.access attribute is made available by the
towel.mt.middleware.LazyAccessMiddleware middleware.

	towel.mt.modelview.ModelView automatically fills in a created_by
foreign key pointing to auth.User if it exists.

	The form classes in towel.mt.forms, those being ModelForm, Form
and SearchForm all require the request (the two former on initialization,
the latter on post_init). Model choice fields are postprocessed to only
contain values from the current tenant. This does not work if you customize
the choices field at the same time as setting the queryset. If you
do that you’re on your own.

	The model authentication backend towel.mt.auth.ModelBackend also allows
email addresses as username. It preloads the access and client model and
assigns it to request.user if possible. This is purely a convenience –
you are not required to use the backend.

Forms

These three form subclasses will automatically add limitation by tenant
to all form fields with a queryset attribute.

Warning

If you customized the dropdown using choices you have to limit the
choices by the current tenant yourself.

Middleware for a lazy request.access attribute

	
class towel.mt.middleware.LazyAccessMiddleware

	This middleware (or something equivalent providing a request.access
attribute must be put in MIDDLEWARE_CLASSES to use the helpers in
towel.mt.

Models for multitenant Django projects

The models for towel.mt have to be provided by the project where
towel.mt is used, that’s why this file is empty.

The simplest models might look like that:

from django.contrib.auth.models import User
from django.db import models

class Client(models.Model):
 name = models.CharField(max_length=100)

class Access(models.Model):
 EMPLOYEE = 10
 MANAGEMENT = 20

 ACCESS_CHOICES = (
 (EMPLOYEE, 'employee'),
 (MANAGEMENT, 'management'),
)

 client = models.ForeignKey(Client)
 user = models.OneToOneField(User)
 access = models.SmallIntegerField(choices=ACCESS_CHOICES)

API methods can be protected as follows:

from towel.api import API
from towel.api.decorators import http_basic_auth
from towel.mt.api import Resource, api_access

Require a valid login and an associated Access model:
api_v1 = API('v1', decorators=[
 csrf_exempt,
 http_basic_auth,
 api_access(Access.EMPLOYEE),
])
api_v1.register(SomeModel,
 view_class=Resource,
)

Other views:

from towel.mt import AccessDecorator

Do this once somewhere in your project
access = AccessDecorator()

@access(Access.MANAGEMENT)
def management_only_view(request):
 # ...

Paginator

Drop-in replacement for Django’s django.core.paginator with additional
goodness

Django’s paginator class has a page_range method returning a list of all
available pages. If you got lots and lots of pages this is not very helpful.
Towel’s page class (not paginator class!) sports a page_range method
too which only returns a few pages at the beginning and at the end of the page
range and a few pages around the current page.

All you have to do to use this module is replacing all imports from
django.core.paginator with towel.paginator. All important classes and
all exceptions are available inside this module too.

The page range parameters can be customized by adding a PAGINATION setting.
The defaults are as follows:

PAGINATION = {
 'START': 6, # pages at the beginning of the range
 'END': 6, # pages at the end of the range
 'AROUND': 5, # pages around the current page
 }

	
exception towel.paginator.InvalidPage

	

	
exception towel.paginator.PageNotAnInteger

	

	
exception towel.paginator.EmptyPage

	

	
class towel.paginator.Paginator(object_list, per_page, orphans=0, allow_empty_first_page=True)

	Custom paginator returning a Page object with an additional page_range
method which can be used to implement Digg-style pagination

	
page(number)

	Returns a Page object for the given 1-based page number.

	
class towel.paginator.Page(page)

	Page object for Digg-style pagination

	
page_range

	Generates a list for displaying Digg-style pagination

The page numbers which are left out are indicated with a None
value. Please note that Django’s paginator own page_range method
isn’t overwritten – Django’s page_range is a method of the
Paginator class, not the Page class.

Usage:

{% for p in page.page_range %}
 {% if p == page.number %}
 {{ p }} <!-- current page -->
 {% else %}
 {% if p is None %}
 …
 {% else %}
 {{ p }}
 {% endif %}
 {% endif %}
{% endfor %}

Queryset transform

django_queryset_transform

Allows you to register a transforming map function with a Django QuerySet
that will be executed only when the QuerySet itself has been evaluated.

This allows you to build optimisations like “fetch all tags for these 10 rows”
while still benefiting from Django’s lazy QuerySet evaluation.

For example:

def lookup_tags(item_qs):
 item_pks = [item.pk for item in item_qs]
 m2mfield = Item._meta.get_field('tags')[0]
 tags_for_item = Tag.objects.filter(
 item__in = item_pks
).extra(select = {
 'item_id': '%s.%s' % (
 m2mfield.m2m_db_table(), m2mfield.m2m_column_name()
)
 })
 tag_dict = {}
 for tag in tags_for_item:
 tag_dict.setdefault(tag.item_id, []).append(tag)
 for item in item_qs:
 item.fetched_tags = tag_dict.get(item.pk, [])

qs = Item.objects.filter(name__contains = 'e').transform(lookup_tags)

for item in qs:
 print(item, item.fetched_tags)

Prints:

Winter comes to Ogglesbrook [<sledging>, <snow>, <winter>, <skating>]
Summer now [<skating>, <sunny>]

But only executes two SQL queries - one to fetch the items, and one to fetch
ALL of the tags for those items.

Since the transformer function can transform an evaluated QuerySet, it
doesn’t need to make extra database calls at all - it should work for things
like looking up additional data from a cache.multi_get() as well.

Originally inspired by http://github.com/lilspikey/django-batch-select/

LICENSE

Copyright (c) 2010, Simon Willison.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Django nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	
class towel.queryset_transform.TransformQuerySet(*args, **kwargs)

	
	
iterator()

	An iterator over the results from applying this QuerySet to the
database.

Quick

This module beefs up the default full text search field to be a little
bit more versatile. It allows specifying patterns such as is:unread
or !important which are extracted from the query string and returned
as standalone values allowing the implementation of a search syntax
known from f.e. Google Mail.

Quick rules always consist of two parts: A regular expression pulling
values out of the query string and a mapper which maps the values from
the regex to something else which may be directly usable by forms.

Usage example:

QUICK_RULES = [
 (re.compile(r'!!'), quick.static(important=True)),
 (re.compile(r'@(?P<username>\w+)'),
 quick.model_mapper(User.objects.all(), 'assigned_to')),
 (re.compile(r'\^\+(?P<due>\d+)'),
 lambda v: {'due': date.today() + timedelta(days=int(v['due']))}),
 (re.compile(r'=(?P<estimated_hours>[\d\.]+)h'),
 quick.identity()),
]

data, rest = quick.parse_quickadd(
 request.POST.get('quick', ''),
 QUICK_RULES)

data['notes'] = ' '.join(rest) # Everything which could not be parsed
 # is added to the ``notes`` field.
form = TicketForm(data)

Note

The mappers always get the regex matches dict and return a
dict.

	
towel.quick.bool_mapper(attribute)

	Maps yes, 1 and on to True and no, 0
and off to False.

	
towel.quick.due_mapper(attribute)

	Understands Today, Tomorrow, the following five localized
week day names or (partial) dates such as 20.12. and 01.03.2012.

	
towel.quick.identity()

	Identity mapper. Returns the values from the regular expression
directly.

	
towel.quick.model_choices_mapper(data, attribute)

	Needs a value provided by the regular expression and returns
the corresponding key value.

Example:

class Ticket(models.Model):
 VISIBILITY_CHOICES = (
 ('public', _('public')),
 ('private', _('private')),
)
 visibility = models.CharField(choices=VISIBILITY_CHOICES)

QUICK_RULES = [
 (re.compile(r'~(?P<value>[^\s]+)'), quick.model_choices_mapper(
 Ticket.VISIBILITY_CHOICES, 'visibility')),
]

	
towel.quick.model_mapper(queryset, attribute)

	The regular expression needs to return a dict which is directly passed
to queryset.get(). As a speciality, this mapper returns both the
primary key of the instance under the attribute name, and the instance
itself as attribute_.

	
towel.quick.parse_quickadd(quick, regexes)

	The main workhorse. Named parse_quickadd for historic reasons,
can be used not only for adding but for searching etc. too. In fact,
towel.forms.SearchForm supports quick rules out of the box
when they are specified in quick_rules.

	
towel.quick.static(**kwargs)

	Return a predefined dict when the given regex matches.

Template tags

ModelView template tags

	
towel.templatetags.modelview_detail.model_details(instance, fields=None)

	Returns a stream of verbose_name, value pairs for the specified
model instance:

<table>
{% for verbose_name, value in object|model_details %}
 <tr>
 <th>{{ verbose_name }}</th>
 <td>{{ value }}</td>
 </tr>
{% endfor %}
</table>

	
towel.templatetags.modelview_list.model_row(instance, fields)

	Shows a row in a modelview object list:

{% for object in object_list %}
 <tr>
 {% for verbose_name, field in object|model_row:"name,url" %}
 <td>{{ field }}</td>
 {% endfor %}
 </tr>
{% endfor %}

Batch form template tags

	
towel.templatetags.towel_batch_tags.batch_checkbox(form, id)

	Checkbox which allows selecting objects for batch processing:

{% for object in object_list %}
 {% batch_checkbox batch_form object.id %}
 {{ object }} etc...
{% endfor %}

This tag returns an empty string if batch_form does not exist for some
reason. This makes it easier to write templates when you don’t know if the
batch form will be available or not (f.e. because of a permissions
requirement).

Generally helpful form tags

	
towel.templatetags.towel_form_tags.dynamic_formset(parser, token)

	Implements formsets where subforms can be added using the
towel_add_subform javascript method:

{% dynamic_formset formset "activities" %}
 ... form code
{% enddynamic_formset %}

	
towel.templatetags.towel_form_tags.form_errors(parser, token)

	Show all form and formset errors:

{% form_errors form formset1 formset2 %}

Silently ignores non-existant variables.

	
towel.templatetags.towel_form_tags.form_item(item, additional_classes=None)

	Helper for easy displaying of form items:

{% for field in form %}
 {% form_item field %}
{% endfor %}

	
towel.templatetags.towel_form_tags.form_item_plain(item, additional_classes=None)

	Helper for easy displaying of form items without any additional
tags (table cells or paragraphs) or labels:

{% form_item_plain field %}

	
towel.templatetags.towel_form_tags.form_items(form)

	Render all form items:

{% form_items form %}

	
towel.templatetags.towel_form_tags.form_warnings(parser, token)

	Show all form and formset warnings:

{% form_warnings form formset1 formset2 %}

Silently ignores non-existant variables.

Template tags for pulling out the verbose_name(_plural)? from almost any object

	
towel.templatetags.verbose_name_tags.verbose_name(item)

	Pass in anything and it tries hard to return its verbose_name:

{{ form|verbose_name }}
{{ object|verbose_name }}
{{ formset|verbose_name }}
{{ object_list|verbose_name }}

	
towel.templatetags.verbose_name_tags.verbose_name_plural(item)

	Pass in anything and it tries hard to return its verbose_name_plural:

{{ form|verbose_name_plural }}
{{ object|verbose_name_plural }}
{{ formset|verbose_name_plural }}
{{ object_list|verbose_name_plural }}

Utils

	
towel.utils.app_model_label(model)

	Stop those deprecation warnings

	
towel.utils.changed_regions(regions, fields)

	Returns a subset of regions which have to be updated when fields have
been edited. To be used together with the {% regions %} template
tag.

Usage:

regions = {}
render(request, 'detail.html', {
 'object': instance,
 'regions': regions,
 })
return HttpResponse(
 json.dumps(changed_regions(regions, ['emails', 'phones'])),
 content_type='application/json')

	
towel.utils.parse_args_and_kwargs(parser, bits)

	Parses template tag arguments and keyword arguments

Returns a tuple args, kwargs.

Usage:

@register.tag
def custom(parser, token):
 return CustomNode(*parse_args_and_kwargs(parser,
 token.split_contents()[1:]))

class CustomNode(template.Node):
 def __init__(self, args, kwargs):
 self.args = args
 self.kwargs = kwargs

 def render(self, context):
 args, kwargs = resolve_args_and_kwargs(context, self.args,
 self.kwargs)
 return self._render(context, *args, **kwargs):

 def _render(self, context, ...):
 # The real workhorse

	
towel.utils.related_classes(instance)

	Return all classes which would be deleted if the passed instance
were deleted too by employing the cascade machinery of Django
itself. Does not return instances, only classes.

Note! When using Django 1.5, autogenerated models (many to many through
models) are returned too.

	
towel.utils.resolve_args_and_kwargs(context, args, kwargs)

	Resolves arguments and keyword arguments parsed by
parse_args_and_kwargs using the passed context instance

See parse_args_and_kwargs for usage instructions.

	
towel.utils.safe_queryset_and(head, *tail)

	Safe AND-ing of querysets. If one of both queries has its
DISTINCT flag set, sets distinct on both querysets. Also takes extra
care to preserve the result of the following queryset methods:

	reverse()

	transform()

	select_related()

	prefetch_related()

	
towel.utils.substitute_with(to_delete, instance)

	Substitute the first argument with the second in all relations,
and delete the first argument afterwards.

	
towel.utils.tryreverse(*args, **kwargs)

	Calls django.core.urlresolvers.reverse, and returns None on
failure instead of raising an exception.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 towel	

 	
 	
 towel.templatetags.modelview_detail	

 	
 	
 towel.templatetags.modelview_list	

 	
 	
 towel.templatetags.towel_batch_tags	

 	
 	
 towel.templatetags.towel_form_tags	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	add_view() (in module towel.modelview.ModelView)

 	adding_allowed() (in module towel.modelview.ModelView)

 	API (class in towel.api)

 	
 	api (towel.api.Resource attribute)

 	api_reverse() (in module towel.api)

 	APIException

B

 	
 	base_template (towel.modelview.ModelView attribute)

 	
 	batch_checkbox() (in module towel.templatetags.towel_batch_tags)

 	batch_form (towel.modelview.ModelView attribute)

C

 	
 	crud_view_decorator() (towel.modelview.ModelView method)

 	
 	custom_messages (towel.modelview.ModelView attribute)

D

 	
 	decorators (towel.api.API attribute)

 	default_messages (towel.modelview.ModelView attribute)

 	delete() (towel.api.Resource method)

 	
 	deletion_allowed() (in module towel.modelview.ModelView)

 	dispatch() (towel.api.Resource method)

 	dynamic_formset() (in module towel.templatetags.towel_form_tags)

E

 	
 	edit_view() (in module towel.modelview.ModelView)

 	
 	editing_allowed() (in module towel.modelview.ModelView)

 	extend_args_if_post() (in module towel.modelview.ModelView)

F

 	
 	form_class (towel.modelview.ModelView attribute)

 	form_errors() (in module towel.templatetags.towel_form_tags)

 	form_item() (in module towel.templatetags.towel_form_tags)

 	
 	form_item_plain() (in module towel.templatetags.towel_form_tags)

 	form_items() (in module towel.templatetags.towel_form_tags)

 	form_warnings() (in module towel.templatetags.towel_form_tags)

G

 	
 	get() (towel.api.Resource method)

 	get_form() (in module towel.modelview.ModelView)

 	get_form_instance() (in module towel.modelview.ModelView)

 	get_formset_instances() (in module towel.modelview.ModelView)

 	get_object() (in module towel.modelview.ModelView)

 	
 	get_object_or_404() (in module towel.modelview.ModelView)

 	get_page() (towel.api.Resource method)

 	get_query_set() (in module towel.modelview.ModelView)

 	get_set() (towel.api.Resource method)

 	get_single() (towel.api.Resource method)

H

 	
 	handle_batch_form() (in module towel.modelview.ModelView)

 	handle_search_form() (in module towel.modelview.ModelView)

 	
 	head() (towel.api.Resource method)

 	http_method_names (towel.api.Resource attribute)

L

 	
 	limit_per_page (towel.api.Resource attribute)

 	
 	list_view() (in module towel.modelview.ModelView)

M

 	
 	max_limit_per_page (towel.api.Resource attribute)

 	model (towel.api.Resource attribute)

 	
 	model_details() (in module towel.templatetags.modelview_detail)

 	model_row() (in module towel.templatetags.modelview_list)

 	ModelView (class in towel.modelview)

N

 	
 	name (towel.api.API attribute)

O

 	
 	Objects (class in towel.api)

 	
 	options() (towel.api.Resource method)

 	ordering_link() (in module towel.templatetags.modelview_list)

P

 	
 	Page (class in towel.api)

 	paginate_by (towel.modelview.ModelView attribute)

 	paginate_object_list() (in module towel.modelview.ModelView)

 	pagination() (in module towel.templatetags.modelview_list)

 	pagination_all_allowed (towel.modelview.ModelView attribute)

 	paginator_class (towel.modelview.ModelView attribute)

 	parse() (towel.api.RequestParser method)

 	
 	parse_form() (towel.api.RequestParser method)

 	parse_json() (towel.api.RequestParser method)

 	patch() (towel.api.Resource method)

 	post() (towel.api.Resource method)

 	post_save() (in module towel.modelview.ModelView)

 	process_form() (in module towel.modelview.ModelView)

 	put() (towel.api.Resource method)

Q

 	
 	queryset (towel.api.Resource attribute)

 	
 	querystring() (in module towel.api)

 	(in module towel.templatetags.modelview_list)

R

 	
 	register() (towel.api.API method)

 	render_form() (in module towel.modelview.ModelView)

 	render_list() (in module towel.modelview.ModelView)

 	RequestParser (class in towel.api)

 	
 	Resource (class in towel.api)

 	resources (towel.api.API attribute)

 	response_add() (in module towel.modelview.ModelView)

 	response_edit() (in module towel.modelview.ModelView)

 	root() (towel.api.API method)

S

 	
 	save_form() (in module towel.modelview.ModelView)

 	save_formset() (in module towel.modelview.ModelView)

 	save_formsets() (in module towel.modelview.ModelView)

 	save_model() (in module towel.modelview.ModelView)

 	search_form (towel.modelview.ModelView attribute)

 	
 	search_form_everywhere (towel.modelview.ModelView attribute)

 	serialize_instance() (towel.api.API method)

 	serialize_model_instance() (in module towel.api)

 	serialize_response() (towel.api.Resource method)

 	Serializer (class in towel.api)

 	serializers (towel.api.API attribute)

T

 	
 	template_object_list_name (towel.modelview.ModelView attribute)

 	template_object_name (towel.modelview.ModelView attribute)

 	towel.templatetags.modelview_detail (module)

 	
 	towel.templatetags.modelview_list (module)

 	towel.templatetags.towel_batch_tags (module)

 	towel.templatetags.towel_form_tags (module)

 	trace() (towel.api.Resource method)

U

 	
 	unserialize_request() (towel.api.Resource method)

 	
 	urlconf_detail_re (towel.modelview.ModelView attribute)

 	urls (towel.api.API attribute)

V

 	
 	view_decorator() (towel.modelview.ModelView method)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Towel - Keeping you DRY since 2010

 		
 Installation instructions

 		
 Towel API

 		
 The API class

 		
 Resources

 		
 A typical request-response cycle

 		
 The serializer

 		
 The request parser

 		
 Additional classes and exceptions

 		
 Utility functions

 		
 API behavior

 		
 Resource list

 		
 Listing endpoints

 		
 Object representation

 		
 ModelView

 		
 Preparing your models, views and URLconfs for ModelView

 		
 The main ModelView class

 		
 Models and querysets

 		
 Object lists

 		
 List Searchable

 		
 Object detail pages

 		
 Adding and updating objects

 		
 Object deletion

 		
 Deletion of inline formset instances

 		
 Standard context variables

 		
 Permissions

 		
 Batch processing

 		
 Search and Filter

 		
 Making lists searchable using the search form

 		
 Advanced SearchForm features

 		
 Persistent queries

 		
 Quick Rules

 		
 Template tags

 		
 ModelView detail tags

 		
 ModelView list tags

 		
 Batch tags

 		
 Form tags

 		
 API programming

 		
 Deletion

 		
 Forms

 		
 Managers

 		
 ModelView

 		
 Multitenancy

 		
 Assumptions

 		
 Forms

 		
 Middleware for a lazy request.access attribute

 		
 Models for multitenant Django projects

 		
 Paginator

 		
 Queryset transform

 		
 django_queryset_transform

 		
 LICENSE

 		
 Quick

 		
 Template tags

 		
 ModelView template tags

 		
 Batch form template tags

 		
 Generally helpful form tags

 		
 Template tags for pulling out the verbose_name(_plural)? from almost any object

 		
 Utils

_static/up.png

